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Abstract— Radio spectrum is a precious resource which is shrinking progressively due to inventions of many applications incorporating 

in wireless communication systems. Spectrum utilization efficiency can be improved by exploiting opportunistic radio, a promising 

candidate for the next generation wireless radio. In the emerging paradigm of opportunistic radio networks, unlicensed radio users are 

allowed to transmit opportunistically on a temporarily empty frequency band that is not currently being accessed by the licensee. 

Cognitive radio (CR) is considered as a promising solution to the spectrum scarcity problems that allows proficient use of radio 

resources through accessing spectrums opportunistically. In order to support spectrum accessing functionality, the CR users have the 

duty to sense the radio environment dynamically for being aware of the highly prioritized licensee while spectrum sensing is one of the 

most challenging tasks in the promising CR networks.  In this paper, various aspects for dynamic spectrum access (DSA) schemes are 

presented, together with a brief discussion of the pros and cons of each algorithm of spectrum sensing methodologies from CR 

perspective. Additionally, the future challenges are investigated that are associated with DSA and spectrum sensing techniques. Special 

attention is paid to the challenges associated with wideband sensing.  
 

Index Terms— Dynamic spectrum access; wideband spectrum sensing; compressive sampling; analog-to-information converter; spectral 

estimation. 

I. INTRODUCTION 

The demand for radio frequency (RF) spectrum is 

tremendously increased in time with the proliferation of 

various wireless services employing static frequency 

allocation planning, leading to spectrum scarcity and to cope 

up with this demand, cognitive radio (CR) is a solution of 

huge prospect. CR can be described as an intelligent and 

dynamically reconfigurable radio which itself can regulate its 

radio parameters in temporal and spatial domain according to 

modifications in the surrounding environment. The use of CR 

technology allows in principle flexible and agile access to the 

spectrum as well as improving spectrum efficiency 

substantially. It has been reported by the federal 

communications commission (FCC) that localized temporal 

and spatial spectrum utilization is very poor [1]. Currently, 

new spectrum policies are being developed by the Federal 

Communications Commission (FCC) that will allow CRs to 

opportunistically access a licensed primary user (PU) band, 

when the PU does not occupy a frequency band. The growing 

interest of dynamic spectrum access (DSA) in CR is specially 

related to the fact that it is considered as a possible solution of 

the static spectrum allocation policies and a number of DSA 

models are proposed in open literatures [2-6]. In order to dig 

up the benefit from DSA, knowledge about the PU vacant 

bands are necessary and CRs should be able to independently 

detect spectral opportunities without any assistance from PUs; 

this ability is called spectrum sensing, which is considered as 

one of the most challenging tasks in CR networks [7-8]. In 

particular, a CR should explore the information about inactive 

PU bands and geographical location which is then 

opportunistically utilized by the CRs, thus leads enhanced 

spectrum efficiency. 

Several narrowband spectrum sensing algorithms have been 

studied in the literature [3], [6-9] and references therein, 

including matched-filtering, energy detection, and 

cyclostationary feature detection. To obtain higher 

opportunistic throughput for different multimedia data 

services wideband spectrum sensing [10-12] is necessary for 

future wireless networks as Shannon’s formula says that, 

under certain conditions, the maximum theoretically 

throughput is directly proportional to the spectral bandwidth. 

However, conventional wideband spectrum sensing techniques 

becomes challenging due to high sampling frequency 

functioning at or above Nyquist rates could lead 

implementation complexity [13]. There are several wideband 

sensing approaches exploiting sub-Nyquist sampling 

commonly known as compressive sensing (CS), thus employs 

relief of high-speed digital signal processing (DSP) units and 

is elaborately illustrated in [13-17]. 

This paper presents an introductory tutorial on DSA 

schemes and spectrum sensing for CR viewpoint featuring 

both noncooperative and cooperative sensing strategies and 

provides comparative analysis among various detection 

techniques. We begin with a short review of DSA 

management methodologies and point out the characteristic 

features of DSA in Section II. In Section III, we would like to 

deliver a comprehensive classification of narrowband and 

wideband spectrum sensing schemes. A variety of 

conventional and emerging spectrum sensing techniques based 

on recent advances in detection of narrowband and wideband 

signal at CR nodes are illustrated as long as with their 
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performance comparisons. This is followed by a detailed 

discussion on the limitations associated with spectrum sensing 

at individual CR terminal. Section IV presents some open 

research issues in DSA and future research directions of 

spectrum sensing and finally some conclusions are drawn in 

Section V. 

II. DYNAMIC SPECTRUM ACCESS IN CR NETWORKS 

Nowadays, wireless communication is suffered from 

spectrum scarcity due to newly developed various wireless 

applications of them most of which are multimedia 

applications. FCC disclosed that the licensed frequency bands 

are poorly utilized most of the time and a particular 

geographic location mainly due to the conventional command 

and control type spectrum regulation (i.e., fixed spectrum 

allocation) policy that has prevailed for decades [1],[6]. In 

order to use the unused licensed spectrum holes or white 

spaces, effort is put on achieving DSA. CR can manage in 

order to mitigate the spectrum scarcity problem by enabling 

DSA scheme, which allows CRs to identify the unemployed 

portions of licensed band and utilize them opportunistically as 

long as the CRs do not interfere with the PUs communication. 

A taxonomy of the DSA scheme [6 and references therein] is 

illustrated in the following figure (Fig.1). In order to meet the 

massive demand of radio spectrum, the CR network has 

opened up flexible and agile access to the wireless radio 

resources, which in turn, improve spectrum utilization 

efficiency [2]. CR is a dynamically reconfigurable radio which 

can adjust its radio parameters in response to the surrounding 

environment. The state of art of DSA schemes will be 

discussed in this section.  

Dynamic Spectrum Access

Hierarchical Access  

Model

Spectrum 

Underlay 

(UWB)

Open Sharing Model

(Spectrum Common 

Models)

 Dynamic Exclusive 
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Fig.1: Fundamental classification of dynamic spectrum access 

A. Hierarchical Access Model 

In this model, a hierarchical access pattern for the PUs 

and CRs have been discussed. The fundamental concept is to 

open licensed spectrum to CRs while limiting the interference 

perceived by the PUs. This model can be categorized as two 

different approaches for sharing the spectrum, i.e., spectrum 

underlay and spectrum overlay. Spectrum underlay (Fig. 2a) 

exploits the spectrum by using it despite of a PU transmission, 

but by controlling the interference within a prescribed limits. 

This can be obtained by using spread spectrum techniques, 

resulting in a signal with large bandwidth but having low 

power spectral density (PSD), which can coexist with PUs. In 

an underlay system, regulated spectral masks impose stringent 

limits on radiated power as a function of frequency, and 

perhaps location [5]. Due to power limitation, underlay radios 

(URs) must spread their signals across large bandwidths with 

lower energy, and/or operate at relatively low rates. An 

advantage of such a system is that radios can be dumb, they do 

not need to sense the channel in order to defer to PUs. The 

underlying principle is that the PUs are either sufficiently 

narrowband or sufficiently high-powered or the URs are 

sufficiently fast frequency hopping with relatively narrow 

bandwidth usage in each dwell, so that there is little 

interference from the URs. As the signal is spread out over a 

large bandwidth, URs can use spread spectrum signalling 

systems, wideband orthogonal frequency division 

multiplexing (OFDM) or impulse radio. Because of the large 

front-end bandwidth, URs are susceptible to interference from 

a sort of co-existing sources, including relatively narrowband 

signals from PUs. In summary, URs tend to be complex in 

terms of hardware implementation, frontend interference 

suppression, high-fidelity low-power high-rate ADC circuit 

design, and estimation and equalization of long delay-spread 

channels. An UR could sense the spectrum as to shape its 

transmitted signal to avoid band congestion which requires 

reliable spectrum sensing like spectrum overlay systems.  

 

 

 

 

 
Fig. 2: (a) Spectrum Underlay, (b) Spectrum Overlay (e.g. Spectrum Pooling 

or OSA) 

     Spectrum overlay intends to use empty PU bands in an 

opportunistic way without interfering PUs, indicating that the 

spectrum should be monitored periodically by the CRs and 

seeking absence of PUs to utilize the unoccupied band. OSA 

can be applied in either temporal or spatial domain. For the 

first case, CRs exploit temporal spectrum opportunities 

resulting from the bursty traffic of PUs and in latter case, CRs 

aim to exploit frequency bands that are not being occupied by 

the PUs in a specific geographic location [5], e.g., the reuse of 

various TV white spaces that are very often used for TV 

broadcasting (e.g., digital TV transmission) in a particular 

geographic location. In the TV broadcasting system, TV-bands 

assigned to adjacent regions are different to avoid co-site 

interference. This results in unused frequency bands varying 

over space. Spectrum overlay mechanism is shown in Fig. 2b. 

OSA is also termed as interweaving of frequencies, is 

therefore done by doing some pre-coding at the transmitter to 

lessen the interference at the receiver. This technique is also 

known as dirty paper coding [5] and references therein. The 

majority of existing work on OSA focuses on the spatial 

domain where spectrum opportunities are considered static or 

slowly varying in time. As a consequence, real-time 

opportunity identification is not as critical a component in this 

class of applications, and the prevailing approach tackles 

network design in two separate steps: (i) opportunity 

identification assuming continuous full spectrum sensing; (ii) 

opportunity allocation among secondary users assuming 
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perfect knowledge of spectrum opportunities at any location 

over the entire spectrum.  

B. Dynamic Exclusive Use Model 

In this model, the radio spectrum is licensed to a user or a 

service for exclusive usage under an agreement to enhance the 

spectrum efficiency and this model maintains the basic 

structure of spectrum regulation policy. Two schemes like 

spectrum property rights and dynamic spectrum allocation 

have been proposed under this model [6].  

 1) Spectrum Property Rights: Generally, when PUs do not 

utilize their spectrum the PUs can sub-lease those 

underutilized spectrum to third party thus can do spectrum 

trading. This type of spectrum trading can be given the right to 

exclusively use those resources without being mandated by a 

regulation authority. This approach is called spectrum property 

rights, as the license or the right is based on the three spectrum 

properties as fixed frequency band, time and a geographic 

location and detailed can be found in [6]. One of the most 

important difficulties in applying this scheme lies in the 

unpredictability of radio wave propagation in both frequency 

and space. Spectral and spatial spillover is unavoidable, 

unpredictable, and depending on the characteristics of both 

transmitters and receivers.  

2) Dynamic Spectrum Allocation: The temporal and spatial 

traffic statistics are explored, which is valuable for sub-leasing 

long-period of applications. Sub-leasing based on traffic 

statistics leads to a much more flexible spectrum allocation 

than in the previous fixed spectrum allocation scheme. As an 

example, the spectrum assigned to UMTS and DVB-T can 

differ over temporal basis and geographic location. DSA opens 

new possibilities of multiple radio communications 

infrastructures when optimized interworking is considered. 

Firstly, to access every service operators can allocate 

spectrums inside a radio network according to local and 

temporal needs. Secondly, users on the move are provided 

with the benefit of accessing enhanced IP based mobile 

services on the fly and wherever they are in a cost efficient 

way [3]. Multiple networks regulation policy and issues in the 

context of temporal and spatial DSA algorithms are pointed 

out in [3]. The typical operational steps in temporal DSA 

algorithm include: a) periodic triggering of DSA algorithm, b) 

management of the traffic on the carriers, c) prediction of the 

loads on the networks and d) access decision while the goal of 

spatial DSA is to allocate spectrum to radio access networks 

(RANs) according to the traffic requirements in each location 

using DSA scheme. Still, the spectrum allocations of different 

RANs belong to adjacent DSA areas should not overlap in the 

same portion of spectrum to avoid interference. A guard band 

of suitable size guarantees the coexistence of the different 

radio systems. The structure of an usual spatial DSA scheme 

can be summarized in three main steps: a) calculating the 

spectrum overlap, b) performing initial assignment and c) 

optimize the spectrum usage. 

C. Open Sharing Model 

The two models addressed in dynamic exclusive model 

deals with the opportunistic usage of the license band, while 

open sharing model accepts an empty band focused only peer 

users. Mostly, technical features of this model are close to the 

traditional medium access control (MAC) issues and this 

model can be categorised as centralized and distributed modes. 

In a centralized model, there is one cognitive manager (CM) 

presents controlling the entire CR environment. The CM can 

be an intelligent system and the problem can be seen as an 

optimization problem. The centralized approach considers that 

there is a reliable pilot channel connecting each CRs to the 

CM. In fact, the CM has great influence on the proficient 

spectrum usage, as well as reconfigure other transmission 

parameters e.g., transmit-power, SNR, modulation scheme, 

etc. In this model, coordination between pairs or coalitions of 

pairs can facilitate the spectrum sensing, competent use of 

radio resources and enhance the quality of the information by 

which the pairs can rely to make their decisions. Centralized 

dynamic spectrum access can be studied in two ways as 

optimization approach and auction-based approach [7]. With 

an optimization-based approach, different types of 

optimization problems can be formulated (e.g., convex 

optimization, assignment problem, linear programming, and 

graph theory). While auction based spectrum access mainly 

states the spectrum trading in a business oriented viewpoint. 

Here, every CR offers price for a specific band of interest to 

the spectrum owner or broker and the highest bidder will then 

get access to utilize it for a certain time period. Though, in 

most of practical scenarios e.g., in ad-hoc CR networks, 

incorporating a CM is problematic [7] while distributed DSA 

suits well in such networks. As there is no CM present, every 

CR user has to gather, exchange, and process the information 

about the surrounding environment independently. Further, 

independent decisions would be taken by the CRs based on 

available radio environment information thus, the CRs obtain 

its performance objective under interference constraints. In the 

following we will present methodologies where a CM is 

absent in the collaborative environment and how the learning 

capability can be employed in such cooperative scenario.  

1)  Cooperative or Non-cooperative Behavior: due to the 

absence of a CM, a CR user can adopt either cooperative or 

non-cooperative behavior. When a CR operating in 

cooperative mode will make a decision on spectrum access 

concerning the performance of the overall network (i.e., a 

collective objective), however, this decision may not result in 

the highest individual benefit of individual CR user. On the 

other hand, a CR user with non-cooperative behavior will 

make a decision that is opposite to cooperative behavior i.e. it 

wants to maximize the individual performance while without 

concerning about the network performance. This behavior is 

also known as selfish behavior of a CR terminal. In [5], it is 

discussed that game theory and iterative water filling approach 

can be used for the distributed DSA. To pertain game theory 

to the process of decision making in a CR, the decision 

making process needs to be modelled as a game. First of all, it 

should be checked whether it is a centralized or a distributed 

DSA model (i.e., the centralized or the distributed open 

sharing model). Secondly, it must be decided which 

performance metric (i.e., the throughput or the latency) is to be 
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optimized. Thirdly, all information about any CR in the 

environment of the decision maker needs to be collected (i.e., 

the possible actions and the preferred strategy). 

With non-collaborative behavior, all network information is 

gathered and processed locally by each CR nodes while 

without interactions among the CRs. In contrary to 

collaborative behavior, the CR users can exchange network 

information with each other. Typically, collaboration among 

CR users to exchange network information is required to 

achieve collective goal. In fact, if the CRs are collaborative, 

they could be either cooperative or non-cooperative as the CRs 

may agree to reveal some information (e.g., the chosen 

spectrum access action), but they make a decision to achieve 

their own objectives (non-cooperative), rather than a group 

objective (cooperative). A protocol will be needed to exchange 

network information for the collaboration among CRs.  

However, when a CR node possesses non-cooperative 

behavior, the network information has to be observed and 

learned individually. Therefore, learning ability plays an 

important role for sorting out intelligent decisions concerning 

radio parameters in the CR distributed DSA management 

systems. The learning process can be either non-collaborative 

or collaborative. In the case of non-collaborative learning, the 

knowledge about the system is produced by each individual 

CRs without interaction with other nodes. On the other hand, 

the CRs can exchange network information as well as to 

process and produce overall system knowledge and based on 

this a CR can make the decision whether to achieve the group 

objective or its individual objective.  

III. SPECTRUM SENSING TECHNIQUES FOR CRS 

Radio spectrum is classified as black spaces, grey spaces 

and white spaces based on the usage of it [3]. CRs take the 

advantages from grey and white spaces by opportunistic use. 

To reuse the spectrum, spectrum sensing is necessary and 

there are different approaches for CR to grasp the spectrum 

sensing issues. Based on the band of interest, spectrum sensing 

techniques can be classified as narrowband and wideband. The 

CR is liable to identify the presence of PU transmission hence 

it is called transmitter based detection or stand-alone detection 

[3] which is addressed for military and many civilian 

applications for signal detection, automatic modulation 

classification, to locate radio source and to perform the 

jamming activities in communication networks. As, no 

collaboration is apparent among the CRs hence this method 

cannot identify hidden PUs. In this section, some of the most 

common transmitter based sensing schemes are addressed.  

A. Narrowband Sensing 

The most efficient way to sense spectral opportunities is to 

detect active primary transmitters in the vicinity of CRs. Here, 

the term ―narrowband‖ implies that the bandwidth of interest 

is less than the coherence bandwidth of the channel. We would 

like to address a number of narrowband spectrum sensing 

methods (Fig. 3) in the following: 

1) Energy Detection: A well-known method for spectrum 

sensing is based on energy detection (ED) where received PU 

signal energy is measured in a specific time period of a 

particular frequency band of interest. This technique 

comprises low computational and implementation 

complexities, thus leads to its popularity. In addition, the 

notable advantage of this scheme is that it does not require any 

prior information about the PUs transmission [8]. While the 

signal received at CR node, the PU status is determined by 

comparing the output of the ED with a threshold which 

depends on the noise floor. The performance of the detection 

algorithm can be determined by two probabilities as the 

probability of detection    and probability of false alarm   . 

ED is considered a non-coherent detection method where 

knowledge of noise variance is adequate for choosing 

threshold to obtain a predetermined false alarm rate. 

Meanwhile, to design a standard CR system higher value of 

detection probability    as well as lower value of false alarm 

probability    is anticipated. The decision threshold    can be 

selected for finding an optimum balance between    and    

however this requires knowledge of noise and detected signal 

powers. The noise power can be estimated, while the signal 

power is difficult to predict as it changes depending on the 

transmission characteristics and the distance between the CR 

and PU [8]. A major drawback is that it has poor detection 

performance under low SNR scenarios and cannot 

differentiate between the signals from PUs and the 

interference from other cognitive radios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
 
 

Fig. 3. Hierarchy of spectrum sensing in cognitive radio 
 

2) Feature Detection: Another promising spectrum sensing 

technique is based on feature detection. A feature is unique 

and inherent characteristics of the PUs signal and it is drawn 

as pilot signal, segment sync, field sync, and also the 

instantaneous amplitude, phase and frequency [9]. In practice, 

these features are commonly perceived many signals 

employed in wireless communication and radar systems [8]. 

Cyclostationary feature detection method detects and 

distinguishes between different types of PU signals by 

exploiting their cyclostationary features. Nowadays, analog to 
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digital conversion has made the use of signal transformation 

practical in order to discover a specific feature. The 

fundamental and promising feature detection technique is 

based on the cyclic feature [8]. Cyclic-feature detection 

approaches are based on the fact that modulated signal are 

usually coupled with sinusoidal carriers, hopping sequences, 

cyclic prefixes, spreading codes, or pulse trains, which result 

in a built-in periodicity [9]. Cyclostationary features are 

originated by the periodicity in the signal in statistical manner 

like mean and autocorrelation or they can be intentionally used 

in order to sustain the spectrum sensing by analyzing a 

spectral correlation function (SCF) or cyclic spectrum [9]. 

This detection algorithms can differentiate noise from the 

signals as the noise is wide-sense stationary (WSS) with no 

correlation while modulated signals are cyclostationary with 

spectral correlation due to the redundancy of signal 

periodicities. Cyclostationary feature detector can overcome 

the energy detector limits in detecting signals in low SNR 

environments [4]. In fact, signals with overlapping features in 

the power spectrum, can have non-overlapping features in the 

cyclic spectrum [8]. 

Waveform based or coherent sensing is another promising 

feature detection scheme which uses patterns like preambles, 

repeatedly transmitted pilot patterns, spreading sequences, etc. 

in wireless systems. In the presence of a known pattern, 

sensing can be performed by correlating the received PU 

signal with a known copy of itself [8] which provides a barrier 

of this type of sensing. It is shown that waveform based 

sensing outperforms energy detector based sensing in terms of 

reliability and convergence time. Likewise, the performance of 

the sensing algorithm increases if the length of the known 

signal pattern increases. The OFDM waveform is altered 

before transmission to generate cycle-frequencies at different 

frequencies which is effective to categorize the signals [8]. 

Again if the number of features generated in the signal is 

increased, the robustness against multipath fading is improved 

considerably at a cost of bigger overhead and bandwidth loss. 

The main advantage of the feature detection is easily 

distinguishable the signals from the noise (even under low 

SNR value). In contrast, feature detection requires long 

observation time and higher computationally complexity as it 

requires to calculate a two-dimensional function dependent on 

both frequency and cyclic frequency and also this scheme 

needs a priori information of the PUs.  

3) Matched Filtering: The advantage is achieved by 

correlating the received signal with a template for detecting 

the presence of a known signal in the received signal. 

However, it requires apriori knowledge of the PUs and 

requires CRs to be equipped with carrier synchronization and 

timing devices that leads enhanced implementation 

complexity. At a CR node, to maximize the output SNR for a 

certain input signal a matched filter is designed which belongs 

to the linear filter [6]. Matched filter detection is applied if a 

CR has apriori knowledge of PUs transmitted signal. 

Therefore, matched-filtering is known as the optimal strategy 

for detection of PUs in the presence of stationary Gaussian 

noise. The main advantage of matched filtering is the short 

time as it requires only  (     ) samples to meet a given 

probability of detection constraint as compared to other 

detection schemes. As matched filtering requires a CR node to 

demodulate received PU signals and thus, it requires a priori 

information of the PUs transmission features such as 

bandwidth, operating frequency, modulation type and order, 

pulse shaping, and frame format [9]. Further, if the CRs want 

to process a variety of signals, the implementation complexity 

of sensing unit is impractically large. In addition, this scheme 

consumes large power as various receiver algorithms require 

to be executed for detection and a priori knowledge 

requirement of PU signals place it in challenging to implement 

in CR networks [6]. 

4) Covariance Based Detection: Another narrowband 

spectrum sensing is based on covariance based detection 

which exploits the inherent correlation in received signals at 

the CR terminal ensuing from the time dispersive nature of 

wireless channel and oversampling of received signal [9]. 

Usually covariance based detection does not require any prior 

information about the PU signal or noise. Conversely, if some 

a priori knowledge concerning the correlation of PU signal 

becomes available, this helps to develop sample covariance 

matrix making the decision test statistic more reliable.  In 

particular, received PU signal samples in MIMO-CR systems 

are spatially correlated as they originated from the same PU 

signals. Another significant feature of this detection scheme is 

that the noise power estimation is not a requisite here as the 

threshold is related to false alarm probability and number of 

samples of the received signal at CR. The better performance 

would possibly be achieved for highly correlated PU signals 

while the performance of this detection degrades with the 

uncorrelated PU signal. In multi-antenna CR systems, multiple 

copies of the received PU signal can be coherently combined 

to maximize the SNR of received signal. The diversity 

combining approaches of maximum ratio combining (MRC) 

and selection combining (SC) are analyzed for ED in [9] and 

the references therein. Although, MRC gives optimal detection 

performance but is difficult to implement as it necessitates a 

priori knowledge of PU signal and channel in the form of 

eigenvector corresponding to maximum eigenvalue of the 

received PU signal covariance matrix and the eigenvector can 

be estimated using the received PU signal samples.  

5) Eigenvalue Based Detection (EBD): If the received 

signals exhibit time correlation as well, the concept of EBD 

can be extended to incorporate joint space–time processing 

[9]. This approach is generally known as covariance based 

detection, EBD being its one special case where the 

eigenvalues of received signal sample covariance matrix are 

used for PU signal detection. In [9], authors have indicated 

that number of significant eigenvalues is directly related to 

presence/absence of data in received PU signal and may be 

exploited to identify the PU occupancy status.  

B. Wideband Sensing  

Wideband spectrum sensing techniques aim to sense a 

frequency bandwidth that exceeds the coherence bandwidth of 

the channel (e.g., 300 MHz - 3 GHz). In the wideband regime, 

traditional narrowband sensing methods cannot be casted off 
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directly for performing wideband spectrum sensing, as of 

making a single binary decision (PU present or absent) in the 

entire wideband signal, thus cannot locate individual spectral 

opportunities that lie within the wideband spectrum. As shown 

in Fig. 3, wideband spectrum sensing can be broadly 

categorized into two types; Nyquist rate wideband sensing and 

sub-Nyquist wideband sensing. The former type processes 

digital signals taken at or above the Nyquist rate, while the 

latter acquires signals using sampling rate lower than the 

Nyquist rate. In the rest of this paper, an overview of the state-

of-the-art wideband spectrum sensing algorithms will be 

provided. 

1) Nyquist Rate Wideband Sensing: A conventional 

approach of wideband multicarrier signal sensing is to directly 

acquire the entire signal using a standard ADC and then use 

DSP algorithms to detect spectral opportunities to CRs. A 

promising solution for the multicarrier wideband sensing 

would be the filter bank schemes as presented in [10]. A 

special class of filter banks (prototype filters) was proposed to 

detect the opportunity in the wideband spectrum. Besides, 

those filter banks can be used for the multicarrier 

communications for the CR nodes. The baseband can be 

directly estimated through using a prototype filter, and other 

bands can be obtained through modulating the prototype filter 

[10]. From a filter bank point of view, in each subcarrier, the 

corresponding portion of the input wideband signal was down-

converted to base-band, low-pass filtered, and then decimated. 

Later, this technique finds the correlation properties of the low 

rate samples comes from each subcarrier band. Therefore, the 

same filter bank can be used demodulation as well as signal 

analysis. In fact, this scheme offers parallel arrangement of the 

filter banks demanding a large number of RF modules, which 

put limit to implement it in economy CR systems design. 

Moreover, a wavelet approach to efficient spectrum sensing 

algorithm is proposed by using a standard ADC in [11]. There, 

the wideband spectrum has decomposed into a train of 

consecutive subbands, where the power spectral property is 

regular within each subband but exhibits discontinuities and 

irregularities between adjacent subbands. In order to locate the 

singularities and irregular structures of the wideband PSD, the 

wavelet transform is an attractive mathematical tool, chosen 

for this scheme. This algorithm works well for the wide range 

of bandwidth to simultaneously identify all piecewise smooth 

subbands, without having prior information about the number 

of subbands within the band of interest. Furthermore, it leads 

more benefit than multiple narrowband band-pass filters, in 

terms of implementation costs and flexibility in adapting to 

dynamic PSD structures. 

Furthermore, a novel multiband joint spectrum detection 

was introduced in [12], which jointly detects the PU 

occupancy status over multiple frequency bands rather than 

over one band at a time where the spectrum sensing problem 

was considered as a class of optimization problems. Here, the 

wideband signal was firstly sampled at Nyquist rate, after 

which a serial to parallel conversion circuit was introduced to 

divide sampled data into parallel data streams. Time domain 

wideband signal was converted to frequency domain spectrum 

by using standard FFT transformation. The whole wideband 

spectrum was then divided into successive sequences of 

narrowband spectra. Lastly, binary hypotheses tests was been 

performed at the bank of multiple narrowband detectors to 

find the empty PU bands for opportunistic usage by the CRs. 

By using proper optimization technique the detection 

threshold was chosen mutually as to maximize the aggregate 

opportunistic throughput in an interference-limited CR 

network. This strategy allows CRs to take maximum 

advantage of the unused spectra and limit the subsequent 

interference. 

2) Sub-Nyquist rate Wideband sensing: The high sampling 

rate as well as obligation of diverge DSP utensils in Nyquist 

systems set limit to explore in wideband sensing hence, sub-

Nyquist approaches are drawing more and more attention in 

both academia and industry [13-17]. Sub-Nyquist wideband 

sensing refers to the procedure of acquiring wideband 

signals/spectrums using sampling rates lower than the Nyquist 

rate and detecting spectral opportunities in the wideband. Two 

important types of sub-Nyquist wideband sensing are 

illustrated so far in the open literatures; wideband CS and 

wideband multi-channel sub-Nyquist sensing. In the 

subsequent paragraphs, we will deliver some discussions and 

comparisons regarding these wideband sensing algorithms. 

a) Compressive Sensing: As wideband spectrum is 

inherently sparse due to its low utilization and capitalizing the 

sparseness, CS becomes a promising approach to recover the 

wideband signal (or data) expending only partial 

measurements. In the CS framework [14] a real-valued, finite-

length, one-dimensional time-variant signal  ( )        
can be denoted as a finite weighted sum of orthonormal basis 

functions (e.g., discrete cosine transform, discrete Fourier 

transform (DFT), etc.) as follows: 

 ( )  ∑     ( )    
 
    (1) 

where only a small number of basis coefficients    signifying 

the sparsity of wideband signal  ( ). Let the acquisition of an 

    vector      where   is the sparsity basis matrix of 

size     and   an     vector with  , the number non-zero 

entries in   . In case of sparse signals, an S-sparse depiction of 

  can be realized as a linear combination of   orthonormal 

basis functions, with     and it can be obtained by 

considering only   of the    coefficients in (1) those are 

significant number of non-zero (NNZ) elements, while the rest 

(   ) of values representing less significant elements or 

zeros leads to the basis of the transform coding [15]. It is 

confirmed that the original signal   can be reconstructed by 

using     (     ) non-adaptive linear projection 

measurements against a measurement matrix   of size     

which is incoherent with sparsifying basis,   [15]. The 

formation of measurement matrix   is given by choosing 

elements that are drawn independently from a random 

distribution functions, e.g.  Bernoulli, Gaussian, etc. thus the 

measuring expression,   can be written as  

         =         (2) 

where      is a matrix of size    . As    , the 

dimension of   in (2) is much lower than that of  , thus there 

are theoretically infinite solutions to the equation. However, if 
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the condition that   is  -sparse is satisfied and with a proper 

condition of measurement matrix,   and the recovery of   can 

be achieved with only   measurements by solving the   -norm 

minimization problem [14-15] as follows  

 ̂           
 
‖ ‖     such that                   (3) 

This is a convex optimization problem solved as a linear 

program celebrated as basis pursuit (BP), iterative greedy 

algorithms, etc.  

Though, CS scheme has concentrated on finite-length and 

discrete-time signals and to acquire sparse, band limited 

signals an analog to information converter (AIC) was 

introduced in [16] which is also entitled as random 

demodulator (RD). An AIC is theoretically similar to an ADC 

operating at Nyquist rate followed by the above mentioned CS 

procedure. The AIC-based model consists of a pseudo-random 

number generator, a mixer, an accumulator, and a low-rate 

sampler. To decline design time, behavioral models of AIC 

yield the same results as the costly circuit models, but reduce 

the complexity of simulation [16]. Usually, sub-Nyquist rate 

samples are employed for wideband spectral reconstruction 

and classify the frequency bands via PSD, wavelet-based edge 

detector tailored to the coarse sensing task of vacant spectrum 

identification. The advantage of this scheme is robust to noise 

and can afford less number of samples. 

b) Multi-channel Sub-Nyquist Wideband Sensing: 

Conventional CS scheme for analog signals require prior 

information about the signal sparsity pattern. The spectral 

estimation becomes more challenging without having the 

spectral support i.e., blind sub-Nyquist sampling of multiband 

signals. The authors in [13] presented a mixed analog-digital 

spectrum sensing method also known as modulated wideband 

converter (MWC) that has multiple sampling channels, with 

the accumulator in each channel replaced by a general low-

pass filter. A unified digital architecture for spectrum-blind 

reconstruction was introduced in that scheme and the 

architecture consists of an analog back-end and digital support 

recovery, the crucial part in this technique. Very few number 

of measurements are required for the digital operations in 

support recovery, thus introducing a short delay and making 

computationally efficient. When the signal support set is 

identified, numerous real-time computations are possible with 

this scheme. The multi-channel structure in MWC provides 

robustness against the noise. 

Another multi-channel sub-Nyquist sampling approach 

employs multi-coset (MC) sampling which incorporates the 

advantages of CS when the frequency power distribution is 

sparse, but applies to both sparse and non-sparse power 

spectra [17]. An innovative PSD estimator was presented in 

their works for continuous wide-sense stationary (WSS) 

random processes producing both compressive and non-

compressive estimates at finite resolutions. The method 

estimates the average PSD within specific sub-bands of a WSS 

random process. Hence, it produces piecewise constant 

estimates that are in contrast to those supported on a discrete 

frequency grid, while the DFT has been employed to sort the 

periodogram. Through proper estimating the PSD, the 

estimator minimized the spectral aliasing effects that occurs in 

each channel to underpin the formation of a linear system of 

equations. Therefore, MC sampling is often implemented by 

using multiple channels with different sub-sampling rates 

while each sampling channels having unlike time offsets. In 

order to obtain a unique solution for the WSS random process 

from the compressive measurements, the sampling pattern 

should be carefully designed in [17] as a result MC sampling 

approach requires the channel synchronization for a robust 

spectral reconstruction. 

An alternative sub-Nyquist sampling scheme also 

accredited as multi-rate asynchronous wideband sub-Nyquist 

sampling (MASS) scheme was presented in [18] to perform 

wideband spectrum sensing. In that scheme, the sampling of 

the wideband signals was performed by the parallel low-rate 

samples. Consequently, spectral aliasing generated by the sub-

Nyquist samples is persuaded in each sampling branch to wrap 

the sparse spectrum occupancy map onto itself, as of the low 

utilization factor of the spectrum.  Specifically, in the same 

observation time, the numbers of samples in multiple sampling 

channels are selected as different consecutive prime numbers 

[18]. Additionally, this scheme only acknowledge the 

amplitudes of sub-Nyquist spectra are of interest, such a multi-

rate wideband sensing approach was perceived robust against 

lack of time synchronization between multiple sampling 

channels, leading to lower implementation complexity, better 

data compression capability, to have excellent performance in 

realistic wireless channels, and is more suitable to implement 

in CR networks. 

IV. OPEN RESEARCH ISSUEES IN SPECTRUM SENSING   

In this section, we would like to focus some research 

challenges that outstretched while implementing the CR 

scenario in practical cases. Especially, attention is paid to the 

issues related to the wideband sensing for future CR networks. 

A. Cooperative Wideband Sensing  

     Research is still carried out for deploying the dynamic 

spectrum management; the received PU signal (either 

narrowband or wideband) at a single CR terminal may be 

severely degraded, basically due to hidden terminal problems, 

multipath fading or shadowing problems, lead to sensing 

performances in a challenge. Such a scenario can be employed 

with cooperative sensing strategies to obtain highly reliable 

detection performance while the computational complexity 

and hardware constraints push those schemes into challenge. 

Cooperative spectrum sensing is considered as a solution to 

some common problems. Several approaches of this kind was 

proposed in [8] and the references therein. Usually, control 

channels can be employed using suitable methodologies 

schemes to share common spectrum sensing outcomes. When 

considering centralized and distributed sensing, optimization 

technique could be a good choice to implement in both data 

and decision fusion. There are several fusion schemes 

presented in [19] with their performances wireless network 

which could be explored in cooperative CR environment. In 

fact, in a distributed CR network, the wideband signal is 

observed by different CRs, while each CRs sense a precise 

spectral components with compressive measurements. Those 
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compressed data from different CR nodes are fused together at 

the fusion center and exploit the spectral opportunities in 

entire wideband in order to save the total number of 

measurements at CR node leads to computationally efficient. 

As the data transmission burden is too high for control 

channels in such a data fusion method, thus, to lessen the data 

load, decision fusioning is introduced when each CR is able to 

detect wideband spectrum independently and at the global 

decision is originated from fusing the local decisions.  When 

the CR nodes perceive fading or shadowing independently, in 

such a scenario cooperative sensing performs better. Flexible 

radio, will possibility be employed for future wireless 

network; which will be increasingly complex and certainly 

heterogeneous in nature and the idea of flexible radio will play 

a vital role in the future wireless communications that must 

satisfy the scalability, adaptability, reconfigurability, 

modularity, and many more. 

B. Sparsity Basis and Level Selection  

Practically most of the CS techniques assume that the 

signal is sparse in some suitable basis functions (frequency 

domain) i.e., the sparsity basis is a Fourier matrix while 

estimating wideband spectrum. The theory of CS states that 

the more the sparsity the better would be the signal estimation 

which directs to better detection performance [21] at the CR 

node as shown in Fig. 4. In future, the spectrum usage 

improves in cellular networks and the sparsity in Fourier 

domain shrinks while sparsity may exist in other domain (e.g., 

sparsity based on mathematical functions). Therefore, 

forthcoming CR receiver exploiting CS will have the 

capability to find the effective basis functions which will 

computationally efficient to estimate dynamic-sparse spectrum 

and thus minimizes prohibitive energy cost.  
 

 
 

Fig. 4. Detection performance as a function of compressive samples 
 

Hence, one possibility for future CR would be to perform 

the sparsity pattern recovery [20] based on the PU received 

signal. Another promising candidate will be exploiting 

spectrum ―blind‖ sub-Nyquist wideband sensing, where a 

priori information of sparsity pattern is insignificant for the 

spectral estimation. In most of CS schemes, the required 

number of compressive measurements will proportionally 

varies with the sparsity level of wideband signal. Therefore, to 

calculate the exact number of compressive measurement for 

doing wideband spectral estimation   sparsity level estimation 

is often required. Yet, due to the dynamic behavior of the PUs 

and time variant fading channels, the sparsity level of 

wideband signal is often time-varying and difficult to estimate. 

This type of uncertainty in sparsity level will be studied in 

future CR networks for the minimum number of compressive 

measurements which will also be energy efficient. 

V. CONCLUSION 

In this paper, various aspects and issues of DSA and 

spectrum sensing in CR networks have presented. A variety of 

detection techniques have been briefly studied, compared and 

classified in this article. We found that spectrum blind 

detection methods are most generic in their application and are 

robust to all kinds of channel/system uncertainties. Moreover, 

they provide highly accurate results at reliable complexity. 

However, if a CR functions independently lead to drastic 

sensing performance degradation in multipath fading or 

shadowing environment which occurs in practical wireless 

networks. Hence, cooperative spectrum sensing could provide 

a mature solution of this type of problems. In summary, future 

research is envisioned to be focused more on implementation-

friendly, low-complexity sensing algorithms that are robust 

enough to timely provide requisite sensing performance with 

demanded reliability.          
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